TILLAGE MANAGEMENT FOR MANURED CROPLAND

DICK WOLKOWSKI
DEPARTMENT OF SOIL SCIENCE
UW-MADISON
THE PRACTICAL GOAL OF MANURE MANAGEMENT

- Key part of the nutrient mgt. plan
- Distribute manure evenly on the farm
 - Avoid soil P buildup
- Select rate to utilize plant nutrients
 - N or P based management
- Avoid application if losses may occur
 - Steeply sloping land
 - Adjacent to water
 - Sandy soils
- Balance nutrient use and disposal need
WHAT THE FUTURE HOLDS

- NMP will allocate manure to more acres on a farm.
- More manure may have to be applied on erodible land and to fields near surface water.
- Rotations on erodible land possible because of conservation tillage.
- Difficult planting into residue with high surface manure rates.
A GREATER CHALLENGE FOR SEMI-SOLID, DAILY HAUL

ALTERNATIVES TO FULL-WIDTH TILLAGE

NO-TILL

LIGHT DISKING

STRIP-TILL
GREATER FLEXIBILITY WITH LIQUID SYSTEMS
GREATER FLEXIBILITY WITH LIQUID SYSTEMS

“Residue Friendly”
Incorporation
WHAT DOES NRCS-590 SAY

CRITERIA FOR ALL SITES

- “T” SHALL NOT BE EXCEEDED
- FOLLOW UWEX RECOMMENDATIONS
- MANURE SHALL NOT BE SPREAD IN CONCENTRATED FLOW CHANNELS
- ESTABLISH PERRENIAL VEGETATION IN CONCENTRATED FLOW CHANNELS
- FROZEN/SNOW-COVERED GROUND:
 - MANURE SHALL NOT BE SPREAD w/in 1000’ OF LAKES AND 300’ OF STREAMS
 - MANURE SHALL NOT BE SPREAD w/in 200’ UPSLOPE OF WELLS, SINKHOLES, GRAVEL PITS
- CAN’T EXCEED CROP’S P REMOVAL
- LIMIT LIQUID MANURE TO 7,000 gal/a
- CAN’T APPLY ON SLOPES > 9 % (SOME EXCEPTIONS)
WHAT DOES NRCS-590 SAY

CRITERIA FOR SURFACE WATER PROTECTION

- USE PHOSPHORUS INDEX TO RANK FIELDS

- OR

- BASE APPLICATION ON SOIL TEST P
 - < 50 ppm P: BASE ON CROP N NEED
 - 50 – 100 ppm P: CAN’T EXCEED REMOVAL FOR 4 YEAR ROTATION
 - > 100 ppm P: APPLICATION LESS THAN P REMOVAL
 - PLUS: > 30% RESIDUE or FALL COVER CROP or CONTOUR and/or BUFFER STRIPS

- APPLICATION IN NON-FROZEN SWQMA’S REQUIRE:
 - BUFFERS or >30 % RESIDUE or FALL COVER CROPS or INCORPORATION THAT MEETS “T”
SOME POTENTIAL ISSUES

- PLANTER PERFORMANCE, SLOW EMERGENCE, POOR STANDS, REDUCED YIELD
- TILLAGE = LESS RESIDUE = MORE EROSION = MORE (TOTAL P) LOSS
- WHICH IS MOST IMPORTANT? THE SOIL CONSERVATION OR NUTRIENT MGT. PLAN
THE CONSERVATION PLAN MUST COME FIRST

- Establishes practices to meet “T”
 - Rotation
 - Tillage intensity
 - Supporting conservation practices

- Manages residue and landscape to protect water quality and maintain soil productivity

- Many are outdated or not followed
IS THERE A "HAPPY MEDIUM" BETWEEN MANURE AND RESIDUE MANAGEMENT
MANURE AND TILLAGE MANAGEMENT STUDY: 2002-2003

- ARLINGTON, LANCASTER, MARSHFIELD, AND SPOONER
- 0, 15, AND 30 t/a SPRING-APPLIED, STRAW-BEDDED MANURE
- MOLDBOARD, CHISEL, LIGHT DISK, STRIP-TILL, NO-TILL
- N RATES (ARLINGTON ONLY)
- EMERGENCE, STAND, RESIDUE, YIELD
- SUPPORTED BY A MULTI-AGENCY LAND AND WATER EDUCATION GRANT
MAIN EFFECT OF MANURE RATE ON THE SURFACE CROP RESIDUE, 2003

The diagram shows the main effect of manure rate on the surface crop residue for different crops: ARL, LAN, MFD, SPN.

- **ARL**: The residue percentage for the 0, 15, and 30 manure rate is approximately 50%, 60%, and 70%, respectively.
- **LAN**: The residue percentage for the 0, 15, and 30 manure rate is approximately 40%, 50%, and 60%, respectively.
- **MFD**: The residue percentage for the 0, 15, and 30 manure rate is approximately 30%, 40%, and 50%, respectively.
- **SPN**: The residue percentage for the 0, 15, and 30 manure rate is approximately 20%, 30%, and 40%, respectively.

The legend indicates that 0 refers to the 0 manure rate, 15 refers to the 15 manure rate, and 30 refers to the 30 manure rate.
MAIN EFFECT OF TILLAGE ON THE SURFACE CROP RESIDUE, 2002

RESIDUE (%) vs. AR, LAN, MFD, SPN

- ARL: MB 10, CH 9, DK 9, ST 8
- LAN: MB 10, CH 9, DK 9, ST 8
- MFD: MB 10, CH 9, DK 9, ST 8
- SPN: MB 10, CH 9, DK 9, ST 8
COMMENTS ON THE EFFECT OF MANURE ON CROP RESIDUE

- No-till resulted in about 90% residue coverage.
- Moldboard plowing resulted in about 10% coverage.
- Light disking or strip-till reduced residue about 15% compared to no-till.
- At the 30 t/a rate manure increased crop residue about 13%.
- Tillage effectiveness decreased with added manure.
Residue Incorporation Ratio as Affected by Manure (2003)

<table>
<thead>
<tr>
<th>Tillage</th>
<th>Manure Rate (t/a)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Strip</td>
<td>0.19</td>
</tr>
<tr>
<td>Disk</td>
<td>0.38</td>
</tr>
<tr>
<td>Chisel</td>
<td>0.51</td>
</tr>
<tr>
<td>Moldboard</td>
<td>0.90</td>
</tr>
</tbody>
</table>

Residue Incorporation Ratio = 1 - (% Res\textsubscript{T} / % Res\textsubscript{NT})
EFFECT OF TILLAGE AND MANURE RATE ON
CORN EMERGENCE, ARLINGTON, WIS., 2002

TILLAGE EFFECT

MANURE EFFECT
EFFECT OF TILLAGE AND MANURE RATE ON CORN EMERGENCE, MARSHFIELD, WIS., 2002

TILLAGE EFFECT

MANURE EFFECT
MAIN EFFECT OF MANURE RATE ON THE FINAL CORN STAND, 2003

[Bar chart showing the effect of manure rate on the final corn stand]
MAIN EFFECT OF TILLAGE ON THE FINAL CORN STAND, 2002

STAND (plt/a)

ARL | LAN | MFD | SPN

0.8 | NS | NS | 4.3

MB | CH | DK | ST | NT
MAIN EFFECT OF MANURE RATE ON CORN YIELD, 2002

YIELD (bu/a)

ARL LAN MFD SPN

0 15 30
MAIN EFFECT OF MANURE RATE ON CORN YIELD, 2003

The diagram shows the main effect of manure rate on corn yield for the years 2003. The x-axis represents the manure rates (0, 15, 30), and the y-axis represents the yield (bu/a). The bars indicate the yield for different manure rates at each location (ARL, LAN, MFD, SPN).
MAIN EFFECT OF TILLAGE ON CORN YIELD, 2002

YIELD (bu/a)

- ARL
- LAN
- MFD
- SPN

NS

- 11
- 14
- 25

Tillage Treatments
- MB
- CH
- DK
- ST
- NT

The chart illustrates the yield differences among various tillage treatments in 2002. The highest yields are observed in different treatments depending on the location and management practices.
MAIN EFFECT OF TILLAGE ON CORN YIELD, 2003

YIELD (bu/a)

ARL

LAN

MFD

SPN

8

12

NS

MB

CH

DK

ST

NT
INTERACTION BETWEEN N RATE AND MANURE RATE AT ARLINGTON, WIS., 2002-2003 (2 YR. AVG.)

Pr>F < 0.01 in both years
MANURE MANAGEMENT IN REDUCED TILLAGE SYSTEMS

- **DO A GOOD JOB OF APPLICATION!**
 - APPLY MANURE EVENLY AT KNOWN RATES
 - CONTROL COMPACTION
 - AVOID SPREADING NEAR CHANNELS OR WATERWAYS

- MANURE ADDS RESIDUE AND AFFECTS TILLAGE EFFICIENCY

- EMERGENCE SLOWED AND STAND REDUCED WITH MANURE

- EQUIPMENT AND MANAGEMENT VARIABILITY AFFECT YIELD

- BENEFITS OF MANURE APPLICATION GO BEYOND NUTRIENT SUPPLY