SULFUR
SULFUR (S)

- Role of S in plants
 - Component of amino acids
 - Essential for nitrate reductase enzyme
 - Nitrate \rightarrow organic-N
- Deficiency symptoms not localized
Figure 1. The sulfur cycle.
POTENTIAL SULFUR DEFICIENCIES

- Low organic matter soils
- No recent manure history
- Low sulfur in precipitation
- Low subsoil sulfur
Sulfur Removed by Crops

<table>
<thead>
<tr>
<th>Crop</th>
<th>Portion harvested</th>
<th>Yield/acre</th>
<th>Sulfur removed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alfalfa</td>
<td>hay</td>
<td>4 tons</td>
<td>23</td>
</tr>
<tr>
<td>Corn</td>
<td>grain</td>
<td>150 bu</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>silage</td>
<td>15 tons</td>
<td>25</td>
</tr>
<tr>
<td>Oat</td>
<td>Grain</td>
<td>80 bu</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>straw</td>
<td>2 tons</td>
<td>9</td>
</tr>
<tr>
<td>Potato</td>
<td>tubers</td>
<td>400 cwt.</td>
<td>10</td>
</tr>
</tbody>
</table>
SULFUR AVAILABILITY INDEX (SAI)

= Sum of available S inputs:

• Organic matter – 2.8 lb S/a for 1% OM
• S in rain & snow – 10 or 20 lb S/a
• S in subsoil 5, 10, or 20 lb S/a
• S in manure – depends on rate, kind
• Soil sulfate-S test
SAI Interpretation:

- $< 30 = \text{Apply S to S-demanding crops}$
- $30-40 = \text{Confirm S need by plant analysis}$
- $> 40 = \text{No additional S needed}$
Suggested treatments for sulfur deficiencies

<table>
<thead>
<tr>
<th>Crop</th>
<th>Sulfur needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forage legumes:</td>
<td>-- lb S/acre --</td>
</tr>
<tr>
<td>Incorporated at seeding</td>
<td>25 - 50</td>
</tr>
<tr>
<td>Topdressed on established stand</td>
<td>15 - 25</td>
</tr>
<tr>
<td>Corn, small grains, vegetables & fruits</td>
<td>10 - 25</td>
</tr>
</tbody>
</table>
Sources of sulfur fertilizer

<table>
<thead>
<tr>
<th>Name of fertilizer</th>
<th>Chemical formula</th>
<th>Fertilizer analysis (%)</th>
<th>Sulfur Content (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very soluble:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ammonium sulfate</td>
<td>(NH$_4$)$_2$SO$_4$</td>
<td>21-0-0</td>
<td>24</td>
</tr>
<tr>
<td>Potassium sulfate</td>
<td>K$_2$SO$_4$</td>
<td>0-0-50</td>
<td>18</td>
</tr>
<tr>
<td>Potassium-magnesium sulfate</td>
<td>K$_2$SO$_4$ • 2MgSO$_4$</td>
<td>0-0-22</td>
<td>23</td>
</tr>
<tr>
<td>Ammonium thiosulfate</td>
<td>(NH$_4$)$_2$S$_2$O$_3$</td>
<td>12-0-0</td>
<td>26</td>
</tr>
<tr>
<td>Magnesium sulfate</td>
<td>MgSO$_4$ • 7 H$_2$O</td>
<td>0-0-0</td>
<td>14</td>
</tr>
</tbody>
</table>
Sources of sulfur fertilizer

<table>
<thead>
<tr>
<th>Name of fertilizer</th>
<th>Chemical formula</th>
<th>Fertilizer analysis (%)</th>
<th>Sulfur Content (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slightly soluble:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium sulfate (gypsum)</td>
<td>CaSO$_4$ 2H$_2$O</td>
<td>0-0-0</td>
<td>17</td>
</tr>
<tr>
<td>Insoluble:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elemental sulfur</td>
<td>S</td>
<td>0-0-0</td>
<td>88-98</td>
</tr>
</tbody>
</table>
MICRONUTRIENTS
Essential Plant Nutrients

• Micronutrients:
 – Zinc (Zn) Zn^{++}
 – Manganese (Mn) Mn^{++}
 – Iron (Fe) Fe^{++} or Fe^{+3}
 – Copper (Cu) Cu^{++}
Essential Plant Nutrients

• Micronutrients:
 – Boron (B) H_2BO_3^-
 – Molybdenum (Mo) MoO_4^{--}
 – Chlorine (Cl) Cl^-
 – Nickel (Ni) Ni^{++}
<table>
<thead>
<tr>
<th>Crop</th>
<th>Boron</th>
<th>Manganese</th>
<th>Zinc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alfalfa</td>
<td>High</td>
<td>Medium</td>
<td>Low</td>
</tr>
<tr>
<td>Corn</td>
<td>Low</td>
<td>Medium</td>
<td>High</td>
</tr>
<tr>
<td>Soybean</td>
<td>Low</td>
<td>High</td>
<td>Medium</td>
</tr>
<tr>
<td>Cabbage</td>
<td>Medium</td>
<td>Medium</td>
<td>Low</td>
</tr>
<tr>
<td>Beets</td>
<td>High</td>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>Potato</td>
<td>Low</td>
<td>Medium</td>
<td>Medium</td>
</tr>
</tbody>
</table>
MICRONUTRIENT FERTILIZERS

• Apply only when:
 ✓ Soil test is low
 ✓ Deficiency symptoms on plant
 ✓ Plant analysis indicates deficiency
 ✓ High crop requirement
MICRONUTRIENT FERTILIZERS

- Fertilizer addition recommended only when:
 - Soil test is low
 - Crop requirement is high or medium

✓ Soil test is low

AND

✓ Crop requirement is high or medium
POTENTIAL MICRONUTRIENT DEFICIENCIES

- Zinc
 - High pH soils
 - Eroded or scalped soils
 - Lower organic matter soils
 - Corn
ZINC DEFICIENCY
MICRONUTRIENT FERTILIZER RECOMMENDATIONS

• **Zinc**
 - ✓ Apply 2-4 lb Zn/acre (banded) if crop has high requirement
 - ✓ Apply 4-8 lb Zn/acre (broadcast)
 - ✓ Foliar applications = 1 lb Zn/acre, repeat treatments may be needed
POTENTIAL MICRONUTRIENT DEFICIENCIES

- Manganese
 - High pH soils
 - Dark colored soils in Southern & Southeastern Wisconsin
 - Red soils in Eastern Wisconsin
 - Soybean & small grains
MANGANESE DEFICIENCY
MICRONUTRIENT FERTILIZER RECOMMENDATIONS

- Manganese
 ✓ Apply 5 lb Mn/acre (banded) if crop has high requirement
 ✓ Foliar applications = 1lb Mn/acre, repeat treatments may be needed
 ✓ Broadcast applications not recommended
POTENTIAL MICRONUTRIENT DEFICIENCIES

• Boron
 ▪ Low pH soils
 ▪ Periods of dry weather
 ▪ Alfalfa
• **Boron**

- ✓ **Apply 2-3 lb B/acre (broadcast) if crop has high requirement**
- ✓ **Apply 1-2 lb B/acre (broadcast) if crop has medium requirement**