Soybean and Wheat Production

Wisconsin CCA Training
December 17, 2003

Dr. Roger Borges
UW - UWEX Soybean and Small Grain
SOYBEAN YIELD IS A COMPLEX SERIES OF INTERACTIONS

YIELD

Soil type

Management

Fertility

Herbicide

Weather

Variety

Diseases

SCN

Weeds

Insects
WISCONSIN SOYBEAN PRODUCTION
KEYS TO SUCCESS

✓ Fertilize and lime based on a sound soil testing program
✓ Do not till or plant when soils are too wet
✓ Plant on dates recommended for your area
✓ Select varieties best suited to your area
✓ Use seed treatments and inoculate as necessary
✓ Use optimum plant populations for your row spacing
✓ Don’t plant too deep, 1” to 1.5” is optimum
✓ Monitor and control pest populations as necessary
✓ Harvest carefully and timely
MANAGEMENT PRACTICES
BY STAGE OF GROWTH

Pre-planting

Post planting, early season

Post flowering

Harvest
PREPLANTING DECISIONS

• TILLAGE

• VARIETY SELECTION

• HERBICIDE CHOICES

• FERTILITY PROGRAM
TABLE 3. CENTRAL REGION SOYBEAN TEST (Page 4 of 4)

2000 Performance of Public and Commercial Entries at Three Central Wisconsin Locations.

FON = FOND DU LAC, **GAL** = GALESVILLE, **HAN** = HANCOCK

<table>
<thead>
<tr>
<th>Originator/Brand Entry</th>
<th>Maturity Herb. Group Toler.</th>
<th>2000 3-Test Average</th>
<th>2000 Yields</th>
<th>Disease</th>
<th>1999 3-Test Average</th>
<th>1999 Yields</th>
<th>8-Test Ave. Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Bu/A 1-5 In Date</td>
<td>Bu/A %</td>
<td></td>
<td>Bu/A 1-5 In Date</td>
<td>Bu/A %</td>
<td></td>
</tr>
<tr>
<td>Ramy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R 900 RR</td>
<td>RR</td>
<td>52 2.7 38 17-Sep</td>
<td>51 57 48 29</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R 1495 RR</td>
<td>RR</td>
<td>56 2.3 33 16-Sep</td>
<td>52 52 53 24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R 1385 RR</td>
<td>RR</td>
<td>55 3.3 35 14-Sep</td>
<td>53 56 57 20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R 1725 CH</td>
<td>CN</td>
<td>60 2.7 38 21-Sep</td>
<td>54 66 59 13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R 1605 CN</td>
<td>CN</td>
<td>56 3.3 33 17-Sep</td>
<td>54 56 57 11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Renk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RS 1498</td>
<td>CN</td>
<td>59 2.0 33 15-Sep</td>
<td>*57 61 60 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RS 159 RR</td>
<td>RR</td>
<td>54 3.7 35 16-Sep</td>
<td>*56 51 54 23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RS 1896</td>
<td>CN</td>
<td>59 2.0 35 19-Sep</td>
<td>53 64 52 24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RS 199 RR</td>
<td>RR</td>
<td>59 3.0 35 20-Sep</td>
<td>*59 64 54 9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RS 208 RR</td>
<td>RR</td>
<td>42 3.7 36 26-Sep</td>
<td>52 44 53 70</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RS 2098</td>
<td>CN</td>
<td>*53 3.0 36 22-Sep</td>
<td>*53 70 65 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spansexoy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>099 RR</td>
<td>RR</td>
<td>50 1.3 32 11-Sep</td>
<td>43 55 52 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>141</td>
<td>CN</td>
<td>58 2.3 31 19-Sep</td>
<td>53 61 59 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>162</td>
<td>STS</td>
<td>51 3.3 34 17-Sep</td>
<td>47 55 51 29</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1506-4</td>
<td>RR</td>
<td>57 2.0 34 17-Sep</td>
<td>53 60 58 13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1700-6</td>
<td>CN</td>
<td>62 2.0 33 17-Sep</td>
<td>*56 *74 56 25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1700-4</td>
<td>RR</td>
<td>58 1.3 32 16-Sep</td>
<td>53 64 56 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2500-7</td>
<td>CN</td>
<td>63 3.0 36 22-Sep</td>
<td>55 65 68 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016-4</td>
<td>RR</td>
<td>54 3.0 35 22-Sep</td>
<td>*58 58 45 31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trelley</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>170</td>
<td>CN</td>
<td>59 2.0 34 16-Sep</td>
<td>54 64 58 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>207</td>
<td>CN</td>
<td>60 3.0 36 23-Sep</td>
<td>55 60 65 9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US Seeds</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US E 1501 RR</td>
<td>RR</td>
<td>57 2.0 34 16-Sep</td>
<td>52 61 58 13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US Seeds</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US E 1901 RR R</td>
<td>RR</td>
<td>53 2.3 36 22-Sep</td>
<td>51 58 51 16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US Seeds</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US S 199</td>
<td>CN</td>
<td>*53 2.7 36 22-Sep</td>
<td>*56 65 65 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEAN</td>
<td></td>
<td>56 2.6 35 19-Sep</td>
<td>53 60 55 20</td>
<td></td>
<td>57 2.1 39 20-Sep</td>
<td>55 53 64 57</td>
<td></td>
</tr>
<tr>
<td>LSD(0.10)**</td>
<td></td>
<td>3 4 5 5 6 7 13</td>
<td>3 4 5 5 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Yields preceded by a "*" are not significantly different (0.10 level) than the highest yielding cultivar.

** Herb. Toler.: Herbicide Tolerance: RR = Tolerance to "Roundup" herbicide, STS = Tolerance to Sulfonyleurea herbicides, CN = Conventional herbicide tolerance.

***Hancock site was affected by Sclerotinia disease (White Mold) in 2000. The disease severity are % of plants expressing White Mold Disease and helps explain the lower yields for select varieties.

Results that are shaded provide the best estimate of relative variety performance.
SOYBEAN GROWTH AND DEVELOPMENT

Vegetative Stages
- V-Stages
- VE, VC, V1, V2, V3, Vn

Reproductive Stages
- R-Stages
- R1, R2, R3, ... R8
- Starts at Flowering
SOYBEAN MORPHOLOGY

- Note growing points

- Nodes are counted when the leaflet above that node is opened
SOYBEAN GERMINATION
GERMINATION AND EMERGENCE PROBLEMS
VE - EMERGENCE

• 5 TO 14 DAYS AFTER PLANTING

• CHECK FOR NEED TO ROTARY HOE

• ASSESS HAIL DAMAGE
HAIL DAMAGE

- Assess mortality
- Know the growing points
- Determine remaining stand
- Use calendar date and stand to determine replant options
VC - COTYLEDON

- Unifoliolate leaves have unrolled
- Leaves are opposite
V1 STAGE

• One trifoliolate
• One node above the unifoliolate
• Trifoliolates are produced singularly and alternately
V2 – 2ND NODE

- Two trifoliolates
- Nodules have been established
- Check for proper nodulation
- If absent determine cause and prepare to apply N
SOYBEAN NODULATION

- Symbiotic relationship
- Native and introduced bacteria
- Necessary for high yields
- Chemicals, cold, hot, moisture all affect bacteria health
NITROGEN NEEDS OF THE SOYBEAN CROP

• Protein production requires nitrogen (N)
 \[N \times 6.25 = \text{Protein} \]

• A 50 bu/a crop of 38% protein seed requires 180 lbs of N/a for seed protein alone

• About 50% of the N comes from the nodules N fixation

• Soil NO$_3$ will inhibit N$_2$ fixation

• A small amount of N \textbf{may} increase yields in certain low N, high yielding environments
V3 – THIRD NODE

- 3 nodes above unifoliolate
- Cotyledons gone
- Axillary buds allow plants to recuperate from damage
V6 STAGE

- New V stages every 3 days
- 50% leaf loss = 3% yield loss
REPRODUCTIVE STAGES AND DEVELOPMENT

<table>
<thead>
<tr>
<th>Stage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>Beginning Bloom (flower)</td>
</tr>
<tr>
<td>R2</td>
<td>Full Bloom</td>
</tr>
<tr>
<td>R3</td>
<td>Beginning Pod</td>
</tr>
<tr>
<td>R4</td>
<td>Full Pod</td>
</tr>
<tr>
<td>R5</td>
<td>Beginning Seed</td>
</tr>
<tr>
<td>R6</td>
<td>Full Seed</td>
</tr>
<tr>
<td>R7</td>
<td>Beginning Maturity</td>
</tr>
<tr>
<td>R8</td>
<td>Full Maturity</td>
</tr>
</tbody>
</table>
SOYBEAN REPRODUCTIVE DEVELOPMENT

Days after flowering

- R1 to R2: Indeterminate Growth
- R2 to R3: Vegetative Growth
- R3 to R4: Flowering
- R4 to R5: Pod Development
- R5 to R8: Seed Filling
BEGINNING FLOWERING

- R1
- One open flower at any node
MIDSEASON MANAGEMENT CONSIDERATIONS

- Soybean Diseases
- Weeds and Herbicides
- Midseason N applications

HARVEST MANAGEMENT

- Harvest timing and storage
- Identity preservation (IP)
FULL FLOWER

• R2

• Open flower at one of the two uppermost nodes
BEGINNING POD

• R3

• Pod 3/16” long at one of the four uppermost nodes

• 60-75% of flowers abort and never contribute to yield
FULL POD

- R4

- Pod is ¾” long at one of the four uppermost nodes

- Beginning of critical yield determining period
BEGINNING SEED

• R5

• Seed is 1/8” long in pod at one of the four uppermost nodes

• Large demand for water and nutrients

• R5.5 is max node #, height and leaf area
Seed and Pod Development Through the R5 Stage
FULL SEED

• R6

• Pod containing a green seed that fills the pod cavity at one of the four uppermost nodes
BEGINNING MATURITY

• R7

• One pod anywhere with its mature color
FULL MATURITY

• 95% of the pods have reached their mature color

• Harvestable 7-10 days after R8

• Plant populations can be assessed
HARVESTING AND STORAGE

• Manage Moisture
 ✓ 13% is optimal for storage and sales

• Carefully adjust (and readjust your combine)
 ✓ Header losses can account for 80% of harvest losses

• Cut low, 3.5” stubble contains 5% of the crop, 6.5” stubble, 12%
SHOULD I REPLANT?
SOYBEAN CYST NEMATODE

- widespread distribution
- no obvious symptoms
- quick reproduction
- long-term survival
- substantial yield loss
- look for yellow plants
- look for stunted plants
- look for SCN females on roots
- collect soil samples
- if < 500, alternate growing corn and SCN-resistant soybean varieties
- if > 500, grow several years of corn until egg counts decrease below 500
BROWN STEM ROT

- Risk throughout WI
- BSR can negate good management practices
- Soybean is the only host
- Soybean variety selection is key to control
- Crop rotations can minimize infection
- More severe BSR is observed in no-till
WHITE MOLD

- Wide host range
- Soybean variety selection is key to control
- Crop rotations can minimize infection
- No-till can help by reducing sclerotia numbers
- Canopy management – Row spacing and seeding rate
PHYTOPHTHORA ROOT ROT

• Many races of PRR exist in WI
• Some varieties have specific race resistant genes
• Improve soil drainage
• Rotate crops
• Avoid soil compaction
• Ridge soil during cultivation to stimulate root growth
• Apron or Ridomil seed treatments are effective
WISCONSIN WHEAT PRODUCTION
KEYS TO SUCCESS

• Fertilize and lime based on a sound soil testing program
• Do not till or plant when soils are too wet or dry
• Plant on dates recommended for your area
• Make informed variety selections
• Use seed treatments as necessary
• Use optimum plant populations for your date of planting
• Don’t plant too deep, 1” to 1.5” is optimum
• Monitor and control weeds as necessary
• Monitor and control foliar diseases
• Harvest carefully and timely
Management Practices by Stage of Growth

Pre-planting

Planting and fall management

Spring management to heading

Post heading to harvest
PRE-PLANTING DECISIONS

• Tillage
• Variety Selection
• Seed Treatments
EFFECT OF PLANTING DATE ON WINTER WHEAT YIELD ARLINGTON, WI 2000

Grain yield (bu/acre)

Planting Date

Sept 1
Sept 17
Sept 30

Kaskaskia
KW 39
Glacier

This presentation is available at
http://soybean.agronomy.wisc.edu
USES OF SEED TREATMENTS

• Manage seed and soil borne pathogens

• A single fungicide will not control all of the pathogens present

• Disease conditions vary from year to year

• In Wisconsin, to control bunt, smuts, and seedling blight (seedling phase of scab)
EFFECT OF SEED TREATMENT ON WINTER WHEAT YIELD ARLINGTON, WI 2000

Grain yield (bu/a)

Sept. 1 Sept. 17 Sept. 30
Planting date

Control DividendXL DividendXL+Gaucho

30 35 40 45 50 55 60 65 70

Grain yield (bu/a)

Sept. 1 Sept. 17 Sept. 30
Planting date

Control DividendXL DividendXL+Gaucho
GROWTH STAGES OF WHEAT

• At least five scales used to describe stages of wheat

• Most widely used is Zadoks, others are Feekes and Haun

• Understanding growth stages is important to match management decisions to plant development
Zadoks 0 to 9
Germination and coleoptile emerged

• Planting depth and soil temp influences the length of this stage

• First leaf just emerging
Zadoks 10 to 15
Seedling Development

• Seedling emergence

• GS 13 = single shoot with three leaves

• GS 15 = single shoot with five leaves
Zadoks 20 to 25
Tillering

• Fall or Spring

• GS 20 = main shoot

• GS 25 = main shoot plus 5 tillers
Zadoks 30 to 39
Stem Elongation

• GS31 = 1st node detectable

• GS 37 = flag leaf just visible

• GS 39 = flag leaf collar just visible

• Many foliar fungicides are applied now
Flag Leaf is the leaf that contribute the most carbohydrates for grain filling
Zadoks 40 to 49
Boot Stage

• GS 43 = boot swelling

• GS 49 = first awns visible
Zadoks 50 to 59

Head Emergence

- GS 50 = first spikelets of head
- GS 59 = head emergence complete

Zadoks 60 to 69

Flowering

- GS 60 = beginning of flowering
- GS 69 = flowering complete
Zadoks 70 to 79
Milk Stage
• GS 71 = watery (a)
• GS 77 = late milk (b)

Zadoks 80 to 89
Dough Stage
• GS 85 = soft dough (c)
• GS 87 = hard dough (d)
• GS 92 = ripe kernel (e) harvest time
BARLEY YELLOW DWARF IN WHEAT
BARLEY YELLOW DWARF

• Caused by Barley Yellow Dwarf Virus

• Symptoms
 ✓ Yellow leaves
 ✓ Yellow flag leaf
 ✓ Stunting
 ✓ Shows up in spring
 ✓ Mistaken for nutrient deficiency
 ✓ Mistaken by environmental problem

• Diagnosis
 ✓ Lab serological (antibody) only real test
 ✓ >= 5 strains
Thank You

Questions?
Comments
Good Luck!