WINTER WHEAT SEED TREATMENTS for WISCONSIN

Dr. R. Borges and J. Gaska
UW Madison Department of Agronomy
Management Practices

• Cultivar: Hopewell
• Row Spacing: 7.5”
• Planting:
 ✓ Date: Sept. 24, 2002
 ✓ Rate: 1.5 million seeds/acre
 ✓ Depth: 1”
• Fertilizer: 60 lb N/a spring applied
• Herbicides: None
• Harvesting date: July 31, 2003
Products Tested

• Insecticides:
 ✓ Gaucho 480
 ✓ Gaucho XT (Insect/fung)
 ✓ Cruiser

• Fungicides:
 ✓ Raxil-Thiram
 ✓ Raxil MD
 ✓ Raxil MD Extra
 ✓ Vitavax 200
 ✓ Dividend Extreme
 ✓ Dividend XL
Popular Seed Applied Fungicides in WI

Raxil/Thiram

✓ Tebuconazole and thiram
✓ popular
✓ broad spectrum, low cost
✓ 3.5 to 4.6 oz/cwt
✓ Raxil-systemic, Thiram surface action
 • Strengths:
 – Excellent on seed borne bunt and smuts
 – Protection against *Fusarium spp.* – scabby seed

Raxil MD

✓ Tebuconazole and metalaxyl
✓ Systemic
✓ 5.0-6.5 oz/100 lbs
 • Strengths:
 – Excellent on seed borne bunt and smuts, *Pythium* root rot, *Septoria*
Popular Seed Applied Fungicides in WI

Raxil MD Extra

✓ Tebuconazole, metalaxyl, and Imazalil
✓ Systemic
✓ 5.0oz/100 lbs
 • Strengths:
 – Excellent on seed borne bunt and smuts, Pythium root rot, Septoria, adds stripe rust

• Vitavax 200

✓ Systemic activity of carboxin with the contact activity of thiram
 • Strengths:
 – Good on seed borne bunt and smuts, Pythium root rot
Popular Seed Applied Fungicides in WI

- **DividendExtreme**
 - Difenconazole (0.77 lb/gal) and Apron XL (0.19 lb/gal)
 - 2.0 to 4.0 fl. oz/cwt
 - Strengths:
 - Excellent on seed borne bunt and smuts

- **DividendXL**
 - Difenconazole (1.54 lb/gal) and Apron XL (0.13 lb/gal)
 - 1.0 to 2.0 fl. oz/cwt
 - Strengths:
 - Excellent on seed borne bunt and smuts
Seed Applied Insecticides

• Gaucho 480
 ✓ Imidacloprid
 ✓ Systemic
 ✓ 1 to 3 fl oz/cwt
 • Controls aphids which can transmit barley yellow dwarf

• Gaucho XT
 ✓ Combination insecticide and fungicide
 ✓ Imidacloprid, metalaxyl and tebuconazole
 ✓ 3.4 fl oz/cwt
Economic Cost of Several Seed Treatments

<table>
<thead>
<tr>
<th>DividendXL RTA</th>
<th>Gaucho 480 insecticide</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 10 oz/cwt</td>
<td>• 1 to 3 oz/cwt</td>
</tr>
<tr>
<td>• 150 lb/a seed rate</td>
<td>• 150 lb/a seed rate</td>
</tr>
<tr>
<td>• $55/gallon</td>
<td>• $1100/gallon</td>
</tr>
<tr>
<td>• $6.50/acre</td>
<td>• $13 to $26/acre</td>
</tr>
<tr>
<td>• $2.58/60 lbs</td>
<td>• $5.16/60 lbs</td>
</tr>
</tbody>
</table>
Germination Rate

Seed Treatment

Germination (%)
Height at Maturity

Seed Treatment

- Cruiser/RaxThi
- Cruiser/DivXL
- Gauch/RaxThi
- Gaacho/DivXL
- Dividend XL
- Divind Extreme
- Vitavax 200
- Raxil MD Extra
- Raxil MD
- Raxil-Thiram
- Cruiser
- Gaucho XT
- Gaucho 480
- UTC

Height (inches)

NO EFFECT
Lodging (Belgium System 0-9)

Seed Treatment

- Cruiser/RaxThi
- Cruiser/DivXL
- Gauch/RaxThi
- Gaucho/DivXL
- Dividend XL
- Dividend Extreme
- Vitavax 200
- Raxil MD Extra
- Raxil MD
- Raxil-Thiram
- Cruiser
- Gaucho XT
- Gaucho 480
- UTC

Lodging (0=none, 9=severe)

NO EFFECT
Grain Yield

Grain Yield (bu/ac)

- Cruiser/RaxThi: 11.7 bu/ac
- Cruiser/DivXL: 11.7 bu/ac
- Gauch/RaxThi: 6.6 bu/ac
- Gaucho/DivXL: 6.6 bu/ac
- Dividend XL: 6.8 bu/ac
- Dividend Extreme: 6.8 bu/ac
- Vitavax 200: 6.8 bu/ac
- Raxil MD Extra: 6.8 bu/ac
- Raxil MD: 6.8 bu/ac
- Raxil-Thiram: 6.8 bu/ac
- Cruiser: 6.8 bu/ac
- Gaucho XT: 6.8 bu/ac
- Gaucho 480: 6.8 bu/ac
- UTC: 6.8 bu/ac
Test Weight

Seed Treatment

- Cruiser/RaxThi: 2.1 lb/bu
- Cruiser/DivXL
- Gaucho/RaxThi
- Gaucho/DivXL
- Dividend XL
- Dividend Extreme
- Vitavax 200
- Raxil MD Extra
- Raxil MD
- Raxil-Thiram
- Cruiser
- Gaucho XT
- Gaucho 480
- UTC

Test Weight (lb/bu)

- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
Summary of Wisconsin Winter Wheat Seed Treatment Data
1988 to 2003

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Variables</td>
<td>1 env</td>
<td>2 env</td>
<td>1 env</td>
<td>1 env</td>
<td>2 env</td>
<td>2 env</td>
<td>4 env</td>
<td>4 env</td>
<td>4 env</td>
<td>2 env</td>
<td>1 loc</td>
</tr>
<tr>
<td></td>
<td>2 var</td>
<td>2 var</td>
<td>2 var</td>
<td>2 var</td>
<td>26 var</td>
<td>2 var</td>
<td>2 var</td>
<td>2 var</td>
<td>3 var</td>
<td>3 var</td>
<td>1 var</td>
</tr>
<tr>
<td></td>
<td>3 trts</td>
<td>4 trts</td>
<td>2 trts</td>
<td>9 trts</td>
<td>3 trts</td>
<td>3 trts</td>
<td>3 trts</td>
<td>4 trts</td>
<td>3 trts</td>
<td>14 trts</td>
<td></td>
</tr>
<tr>
<td>Check</td>
<td>48.0</td>
<td>62.3</td>
<td>43.2</td>
<td>59.0</td>
<td>51.2</td>
<td>57.4</td>
<td>67.2</td>
<td>49.0</td>
<td>85.0</td>
<td>67.6</td>
<td>79.2</td>
</tr>
<tr>
<td>Fungicides</td>
<td>2.3</td>
<td>0.7</td>
<td>-0.4</td>
<td>2.3</td>
<td>-0.6</td>
<td>3.3</td>
<td>0.8</td>
<td>0.5</td>
<td>2.0</td>
<td>1.2</td>
<td>6.6</td>
</tr>
<tr>
<td>Insecticides</td>
<td></td>
<td>6.8</td>
</tr>
<tr>
<td>Fung+Insect</td>
<td></td>
<td>2.6</td>
</tr>
</tbody>
</table>

Average over 11 experiments = gain 1.7 bu/ac

3-exp avg gain 6.8 bu/ac
Historic Winter Wheat Yields in WI

Average State Yield

Yield (bu/a)

0 10 20 30 40 50 60 70 80

+1.48 bu/a/yr
Monthly Precipitation
Arlington, WI

<table>
<thead>
<tr>
<th></th>
<th>April</th>
<th>May</th>
<th>June</th>
<th>April</th>
<th>May</th>
<th>June</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg.</td>
<td>3.5</td>
<td>2.8</td>
<td>6.5</td>
<td>3.5</td>
<td>2.8</td>
<td>6.5</td>
</tr>
<tr>
<td>1996</td>
<td>2.5</td>
<td>3.0</td>
<td>5.0</td>
<td>2.5</td>
<td>3.0</td>
<td>5.0</td>
</tr>
<tr>
<td>1999</td>
<td>4.0</td>
<td>3.5</td>
<td>7.0</td>
<td>4.0</td>
<td>3.5</td>
<td>7.0</td>
</tr>
<tr>
<td>2003</td>
<td>2.0</td>
<td>2.5</td>
<td>4.0</td>
<td>2.0</td>
<td>2.5</td>
<td>4.0</td>
</tr>
<tr>
<td>1997</td>
<td>3.0</td>
<td>3.2</td>
<td>5.5</td>
<td>3.0</td>
<td>3.2</td>
<td>5.5</td>
</tr>
<tr>
<td>1998</td>
<td>4.5</td>
<td>4.0</td>
<td>6.5</td>
<td>4.5</td>
<td>4.0</td>
<td>6.5</td>
</tr>
<tr>
<td>2000</td>
<td>3.0</td>
<td>2.5</td>
<td>5.0</td>
<td>3.0</td>
<td>2.5</td>
<td>5.0</td>
</tr>
</tbody>
</table>

This presentation is available at http://soybean.agronomy.wisc.edu/
Monthly Average Temperatures
Arlington, WI

Higher response years
- Avg.
- 1996
- 1999
- 2003

Lower response years
- Avg
- 1997
- 1998
- 2000

Precipitation (in)

April May June
April May June

This presentation is available at http://soybean.agronomy.wisc.edu/
Hypothesis of Seed Treatment Effects

<table>
<thead>
<tr>
<th>Fall Stand Establishment/Weather</th>
<th>Seed Treatment</th>
<th>Yield Potential into Spring</th>
<th>Spring Weather</th>
<th>Final Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poor</td>
<td>Treated</td>
<td>Higher</td>
<td>Poor</td>
<td>Avg</td>
</tr>
<tr>
<td></td>
<td>Untreated</td>
<td>Lower</td>
<td>Poor</td>
<td>Poor</td>
</tr>
<tr>
<td>Good</td>
<td>Treated</td>
<td>High</td>
<td>Poor</td>
<td>Good</td>
</tr>
<tr>
<td></td>
<td>Untreated</td>
<td>High</td>
<td>Poor</td>
<td>Good</td>
</tr>
</tbody>
</table>

This presentation is available at http://soybean.agronomy.wisc.edu/

Borges, © 2002-2004
University of Wisconsin – Agronomy
Summary of Use of Seed Treatments on Wheat

• Advantages
 ✓ Control of early season seedling diseases
 ✓ Useful when seed and seedling are placed under stress
 ✓ Protect/increase seed viability

• Disadvantages
 ✓ Higher seed cost
 ✓ Hard to dispose of unneeded seed
 ✓ Time/cost of treating
 ✓ One seed treatment will not control all pathogens
 ✓ Variable yield response
Future Steps Needed

• Further test the insecticide seed treatment effect on Wisconsin grown winter wheat.
 ✓ 2 locations x 2 varieties x 16 treatments
 ✓ 4 insecticides, 7 fungicides, and 4 ins+fung
Future Steps Needed

• Further test the insecticide seed treatment effect on Wisconsin grown winter wheat.
 ✓ 2 locations x 2 varieties x 16 treatments
 ✓ 4 insecticides, 7 fungicides, and 4 ins+fung

• Summarize individual product performance
Future Steps Needed

• Further test the insecticide seed treatment effect on Wisconsin grown winter wheat.
 ✓ 2 locations x 2 varieties x 16 treatments
 ✓ 4 insecticides, 7 fungicides, and 4 ins+fung

• Summarize individual product performance

• Continuously monitor diseases and insect pest incidence in Wisconsin
Future Steps Needed

• Further test the insecticide seed treatment effect on Wisconsin grown winter wheat.
 ✓ 2 locations x 2 varieties x 16 treatments
 ✓ 4 insecticides, 7 fungicides, and 4 ins+fung
• Summarize individual product performance
• Continuously monitor diseases and insect pest incidence in Wisconsin
• More integration among the public and private individuals/institutions interested in promoting the Wisconsin wheat industry.
THANK YOU!