SNAP-Plus

Bill Pearson, Laura Ward Good, Paul Kaarakka, Larry Bundy, Kevin Erb and Wes Jarrell
Tool Focus

- To develop NM planning software that meets the ‘new’ 2002 NRCS 590 standard for Wisconsin
- CNMP have been mandated on Concentrated Animal Feeding Operations (CAFO) receiving NRCS cost-sharing for manure storage
 - Conservation plan (RUSLE2)
 - NM plan (PI)
 - Record-keeping program (SNAP)
 - Manure management (SNAP)
Most farms have one or two of these components on hand and are often independent of each other.

To integrate several programs (RUSLE2, WI. P Index, P and K balancing, SNAP2000) to simplify NMP development in accordance with WI. NRCS 590 standard.
Tool Focus

- Advantage:
 - Single interface for inputs - SNAP
 - No redundant data entry
 - Consistent data among all programs
 - Bring soil conservation planning and NM together
 - More comprehensive approach, using P Index and RUSLE2, to managing manure and P
 - Facilitate farm level “what-if” experimentation by providing field and farm views and immediate feedback
SNAP-PLUS

Input: Field by field crop and soil info

Nutrient application calculator

P Index calculator

Output: Fertilizer and manure plan, P Index value, soil loss estimate

Management Loop – change tillage, crop, etc. see affect on RUSLE2 soil loss, P Index, P balance.

RUSLE2 soil loss calculator
Knowledge and Data Transferability

- Inputs
 - Farmer’s name, county, crops grown and fertilizers
Knowledge and Data Transferability

- **Inputs**
 - Farmer’s name, county, crops grown and fertilizers
 - **Field and soil data imported electronically**
Field and Soil Data Needs

- Field name
- Sub farm name
- FSA tract & field No.
- Acres
- Soil name & symbol
- Slope % and length
- Distance to water from field edge
- Contour, strip cropped, terraces, filter strip
- Distance from manure source
- Soil test results – electronic import
Knowledge and Data Transferability

- **Inputs**
 - Farmer’s name, county, crops grown and fertilizers
 - Field and soil data imported electronically
 - **Manure type & quantity, % collected, analysis, annual volumes**
Knowledge and Data Transferability

- Inputs
 - Farmer’s name, county, crops grown and fertilizers
 - Field and soil data imported electronically
 - Manure type & quantity, % collected, analysis, annual volumes
- Cropping data
 - Crop to be grown
 - Yield goal
 - Tillage type
 - Legume/manure application information
 - Fertilizer application information
Soil Test Data

<table>
<thead>
<tr>
<th>Year</th>
<th>Soil Test Date</th>
<th>Irrigated</th>
<th>Rotation Length</th>
<th>Crop 1</th>
<th>Crop 2</th>
<th>Yield Goal</th>
<th>Tillage/Residue (%)</th>
<th>Special Crop Needs</th>
<th>Prior Years Legume Credit</th>
<th>Prior Years Manure Credit</th>
<th>Plan Manure Applications</th>
<th>Plan Fertilizer Applications</th>
<th>Total Credits</th>
<th>Nutrient Excess or Deficit</th>
<th>Crop P Removal/P Balance</th>
<th>P Index (Total = Fast + Sol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002</td>
<td>11/24/2001</td>
<td></td>
<td></td>
<td>Alfalfa</td>
<td>Alfalfa</td>
<td>1-3</td>
<td>No till</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-30</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2003</td>
<td>11/24/2001</td>
<td></td>
<td></td>
<td>Alfalfa</td>
<td>Alfalfa</td>
<td>3.5-4.5</td>
<td>No till</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-30</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2004</td>
<td>11/24/2001</td>
<td></td>
<td></td>
<td>Alfalfa</td>
<td>Alfalfa</td>
<td>3.5-4.5</td>
<td>No till</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-30</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2005</td>
<td>11/20/2004</td>
<td></td>
<td></td>
<td>Corn silage</td>
<td>Corn grain</td>
<td>20-25</td>
<td>No till</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-160</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2006</td>
<td>11/20/2004</td>
<td></td>
<td></td>
<td>Corn grain</td>
<td>Corn grain</td>
<td>130-150</td>
<td>No till</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-160</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Rotation ave soil loss (Ton/acre): 6.5

Rotation ave P Index: 7.6

Plan period P Balance: -135

Soil Test Date: missing

pH: 2.635370

OM %: 2.635579

P (ppm): 1.0607

K (ppm): 3.7431258

The time required for this rotation to reach pH 6.8 is 0 w/ 80-89 lime.
Knowledge and Data Transferability

- Outputs
 - Improved N, P, K and manure management
 - Brings soil conservation together with NM
 - Multi-year view facilitates long range planning for manure and P and K balancing
 - User lead to appropriate management practices to decrease cost and/or environmental risks
Knowledge and Data Transferability

- Outputs
 - P based NM plan
 - Rotational soil loss (RUSLE2)
 - Yearly, rotational and whole farm PI
 - P and K balance by year and rotation
 - Record-keeping – program itself serves as a record-keeper
Present Plans

- Complete development Feb. 2004
- Beta test software, feedback incorporated
- Release Summer 2004, downloadable from UW Soil Science website
- Training workshops around the state, Fall and Winter 2004
Future Plans

- GIS data input and map output
- Transfer data to and from commercial GIS software
- Incorporate financial/feed management software
- N and P whole farm balancing software
SNAP-PLUS

University of Wisconsin Extension

- Bill Pearson – 715-346-4187, Bill.Pearson@uwsp.edu
- Kevin Erb – 920-391-4652, kevin.erb@ces.uwex.edu
- Paul Kaarakka – 608-265-9354, kaarakka@wisc.edu
- Larry Bundy – 608-263-2889, lgbundy@facstaff.wisc.edu
- Laura Ward Good – 608-262-9894 lwgood@wisc.edu