NITROGEN MANAGEMENT

- NITROGEN HAS THE HIGHEST CONCENTRATION OF THE MINERAL ELEMENTS IN PLANT TISSUE
- MAJOR CONSTITUENTS OF THE AMINO ACIDS WHICH MAKE UP PROTEINS
- MAJORITY OF THE SOIL N IS CONTAINED IN THE SOIL ORGANIC MATTER POOL

SOIL ORGANIC MATTER (HUMUS)
LIVING ORGANISMS
PLANT AND ANIMAL RESIDUES

- SOILS RELEASE 25-75 lb/a/year FROM THE SOIL ORGANIC POOL
 THIS AMOUNT IS ACCOUNTED FOR IN RECS.

SOIL N STATUS IS DRIVEN BY MICROBIAL ACTIVITY
PLANT AVAILABILITY AFFECTED BY SEVERAL PROCESSES

THE NITROGEN CYCLE (FIGURE 9.2)

- N_2 FIXATION = A SYMBIOTIC RELATIONSHIP BETWEEN A BACTERIA (RHIZOBIA) AND A PLANT ROOT.

 ATMOSPHERE IS 79% N_2 AND 34,500 TONS OF N_2 IS OVER EACH ACRE. IT IS UNAVAILABLE TO PLANTS. SMALL AMOUNTS FIXED BY LIGHTENING IN AG SYSTEMS MOST ARE ADDED A INOCULANTS BUT SOME LIVE FREELY IN THE SOIL

 BACTERIA INFECT ROOT CREATING A NODULE. PLANT GETS FIXED N, BACTERIA GET CHO.

 N_2 FIXATION IS CONTROLLED BY THE ENZYME NITROGENASE OF WHICH Mo IS A COMPONENT

 SOYBEANS HAVE BEEN SHOWN TO FIX ABOUT 100 lb N/a/yr, BUT ITS GRAIN ALONE REMOVES MORE. SOME SUGGEST THAT SOYBEAN IS A “N MINER”

 ALFALFA HAS BEEN SHOWN TO FIX ABOUT 250 lb N/a/yr. N FERTILIZATION REDUCES FIXATION RATE AS IT IS ENERGY CHEAPER FOR THE PLANT TO ABSORB SOIL N
SNAP BEANS FIX 40-60 lb N/a/yr AND ARE OFTEN FERTILIZED, ESPECIALLY ON SANDS

BLACK LOCUST IS AN EXAMPLE OF A N₂ FIXING TREE

SOME FREE-LIVING BACTERIA AND ALGAE CAN FIX N IN LOW N, ORGANIC MATTER CONDITIONS

- MINERALIZATION (AMMONIFICATION) = CONVERSION OF ORGANIC N TO AMMONIUM (NH₄⁺)

AEROBIC PROCESS OPTIMIZED AT pH 5-8 AND TEMPS 50-85 F

NUMEROUS MICROORGANISMS PARTICIPATE IN MINERALIZATION CALLED AMMONIFICATION BECAUSE THE END PRODUCT OF THEIR METABOLISM IS AMMONIA (NH₃) WHICH QUICKLY COMBINES WITH WATER TO FORM AMMONIUM (NH₄⁺)

LITTLE N IN MINERALIZED IN SWAMPS BECAUSE OF ANEROBIC CONDITIONS. ONCE DRAINED THEY CAN SUPPLY CONSIDERABLE N

SANDY SOILS AND DESERT SOILS MINERALIZE ONLY SMALL AMOUNTS OF N BECAUSE OF THEIR LOW ORGANIC MATTER CONTENT

- NITRIFICATION

CONVERSION OF AMMONIUM ULTimately TO NITRATE. A TWO STEP PROCESS.

AMMONIUM TO NITRITE BY NITROSO MONAS, NITRITE TO NITRATE BY NITROBACTER

NITRITE IS VERY SHORT LIVED IN SOILS
NITRIFICATION OCCURS VERY RAPIDLY IN SOILS. WITHIN 2-3 WEEKS UNDER WISCONSIN CONDITIONS

BOTH AMMONIUM AND NITRATE ARE PLANT AVAILABLE. WHAT FORM DOES FORM DOES PADDY RICE USE? HOW ABOUT CORN?

NITRATE IS LEACHABLE. A PRODUCT CALLED N-SERVE DELAYS THE ACTIVITY OF THE NITROSOMONAS

NITRIFICATION RESULTS IN THE PRODUCTION OF HYDROGEN IONS (SOIL ACIDITY). EACH MOLECULE OF AMMONIUM PRODUCES 2 H⁺

- **IMMOBILIZATION** = THE CONVERSION OF MINERALIZED N (AMMONIUM AND NITRATE) TO ORGANIC N VIA THE UPTAKE BY SOIL MICROBES

CONTINUOUSLY OCCURRING IN SOILS WHERE MICROBES ARE LIVING

IT BECOMES A PROBLEM FOR CROP PRODUCTION WHEN THE MICROBES TAKE MORE THAN THEIR SHARE

INDUCED BY THE ADDITION OF MATERIALS WITH A HIGH CARBON:NITROGEN “C:N” RATIO (NUMBER OF CARBON ATOM vs. NITROGEN ATOMS)

CARBON IS THE ENERGY (FOOD) SOURCE FOR THE MICROBES. THEY ALSO NEED N FOR THEIR PROTEINS

ADDED MATERIALS WHICH HAVE A C:N < 20 WILL RESULT IN A NET RELEASE OF N. MATERIALS WITH A C:N >30 WILL IMMOBILIZE N. MATERIALS WITH A C:N 20-30 COULD DO EITHER DEPENDING ON ENVIRONMENTAL CONDITIONS

TYPICAL C:N RATIOS FOR COMMON MATERIALS

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>C:N</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOIL HUMUS</td>
<td>10</td>
</tr>
<tr>
<td>IMMATURE ALFALFA</td>
<td>12</td>
</tr>
<tr>
<td>MANURE</td>
<td>20</td>
</tr>
<tr>
<td>CORN STALKS</td>
<td>60</td>
</tr>
<tr>
<td>STRAW</td>
<td>80</td>
</tr>
<tr>
<td>---------</td>
<td>-----</td>
</tr>
<tr>
<td>SAW DUST</td>
<td>400</td>
</tr>
<tr>
<td>SUGAR</td>
<td>INFINITY</td>
</tr>
</tbody>
</table>

THE ADDITION OF HIGH C:N MATERIALS WILL INDUCE N DEFICIENCY

COMPOSTING REDUCES THE C:N. WHERE DOES THE EXTRA C GO? BEWARE OF IMMATURE COMPOST

OVERCOME HIGH C:N PROBLEMS BY ADDING N. CORN STALKS IMMOBILIZE N IN NO-TILL. AN EXTRA 30 lb N/a IS RECOMMENDED

- DENITRIFICATION = THE GASEOUS LOSS OF N FROM A SOIL BY BACTERIAL ACTIVITY UNDER ANEROBIC CONDITIONS

 NITRATE IS CONVERTED BACK TO N\(_2\) OR OTHER GASES LIKE NITROUS OXIDE (N\(_2\)O)

 MOST SIGNIFICANT LOSS MECHANISM ON MTS. USUALLY ASSOCIATED WITH SEASONALLY FLOODED (POORLY DRAINED) SOILS, BUT CAN OCCUR WITHIN MOIST AGGREGATES ON WELL DRAINED SOILS

 USUALLY CONSIDERED DETRIMENTAL IN AGRICULTURAL SETTINGS. CAN YOU THINK OF A SITUATION WHERE DENITRIFICATION WOULD BE BENEFICIAL?

- LEACHING = LOSS OF N (USUALLY NITRATE) BY THE DOWNWARD MOVEMENT IN SOILS

 COMMONLY ASSOCIATED WITH SANDY SOILS

 CAN OCCUR ON MTS DURING HEAVY RAINFALL PERIODS OR SNOW MELT. LEACHING MINIMAL AT AVERAGE OR LESS RAINFALL

 AMMONIUM CAN LEACH ON SANDY SOILS WITH A LOW CATION EXCHANGE CAPACITY

 RESPONSIBLE FOR THE CONTAMINATION OF THE GROUNDWATER. 10 ppm NITRATE-N IS CONSIDERED TO BE THE SAFE DRINKING WATER LEVEL FOR HUMANS.
HIGH NITRATE IS A PROBLEM FOR INFANTS WHO CANNOT METABOLIZE NITRATE. INTERFERES WITH BLOOD OXYGEN CONTENT CAUSING “BLUE BABY SYNDROME”

AS ADULTS WE INGEST MANY TIME MORE NITRATE IN FRESH LEAFY VEGETABLES

- **AMMONIA VOLATILIZATION** = LOSS OF N AS AMMONIA GAS FROM SURFACE-APPLIED UREA CONTAINING MATERIALS (UREA OR 28% UAN)

\[\text{CO(NH}_2\text{)}} + \text{H}_2\text{O} \rightarrow \text{(NH}_4\text{)}_2\text{CO}_3 \]

UREAamate Carbonate

\[(\text{NH}_4\text{)}_2\text{CO}_3 + \text{H}^+ \rightarrow \text{NH}_4^+ + \text{CO}_2 + \text{H}_2\text{O} \]

\[\text{NH}_4^+ + \text{OH}^- \rightarrow \text{NH}_3 + \text{H}_2\text{O} \]

FREE EXISTING ENZYME “UREASE” REACTS WITH WATER IN REACTION 1 ABOVE

RATE OF VOLATILIZATION INCREASES WITH TEMPERATURE, SOIL MOISTURE, AND SOIL pH

MAXIMUM DOCUMENTED LOSS IN WISCONSIN WAS 20% OF APPLIED N. SPREAD IN JUNE ON GRASS PASTURE. LOSSES LOWER IN MAY

CORN FERTILIZATION (SEE TABLE 9.2)

MINIMIZE LOSSES BY TILLAGE INCORPORATION OR >0.2” RAINFALL WITHIN 2-3 DAYS

MANUFACTURE OF N FERTILIZER

- **INDUSTRIAL FIXATION** (HABER-BOSCH PROCESS)

\[\text{N}_2 + 3\text{H}_2 \rightarrow 2\text{NH}_3 \]

AIR NAT. GAS HIGH TEMP/AMMONIA PRESSURE

98 % OF N FERTILIZER USE IS AMMONIA OR ONE OF ITS DERIVATIVES

COST OF N FERTILIZER INCREASED IN 2001 BECAUSE OF THE PRICE OF NATURAL GAS. FERTILIZER COMPANIES MADE MORE $
SELLING GAS ALLOTMENTS FOR HEATING, THAN THEY WOULD IF THEY HAD MADE FERTILIZER.

N FERTILIZERS DERIVED FROM AMMONIA (TABLE 9.3)

<table>
<thead>
<tr>
<th>ADD</th>
<th>PRODUCT</th>
<th>% N</th>
</tr>
</thead>
<tbody>
<tr>
<td>–</td>
<td>ANHYDROUS AMMONIA</td>
<td>82 %</td>
</tr>
<tr>
<td>NITRIC ACID + NH₃</td>
<td>AMMONIUM NITRATE</td>
<td>33-34 %</td>
</tr>
<tr>
<td>CARBON DIOXIDE</td>
<td>UREA</td>
<td>45-46 %</td>
</tr>
<tr>
<td>PHOSPHORIC ACID</td>
<td>AMMONIUM PHOSPHATES</td>
<td>11-18 %</td>
</tr>
<tr>
<td>SULFURIC ACID</td>
<td>AMMONIUM SULFATE</td>
<td>21 %</td>
</tr>
<tr>
<td>AMMONIUM NITRATE + UREA</td>
<td>UAN SOLUTIONS</td>
<td>28-32 %</td>
</tr>
</tbody>
</table>
- FACTORS AFFECTING THE CHOICE OF N FERTILIZER

 AGRONOMIC
 LEACHING
 VOLATILIZATION

 SAFETY
 AMMONIA TOXICITY TO PLANTS AND HUMANS
 AMMONIUM NITRATE (BOMBS)
 HANDLING
 LIQUID vs. DRY
 HYGROSCOPICITY (ABSORBS WATER)

 PRICE
 USUALLY AMMONIA IS THE CHEAPEST

- N FERTILIZATION MANAGEMENT

 RATE
 APPLY RECOMMENDED RATE

 ECONOMIC OPTIMUM NITROGEN RATE SIMILAR IN GOOD YEARS AND BAD YEARS

 TAKE CREDITS FOR MANURE, LEGUMES, NITRATE TESTS

 AVOID LOSSES DUE TO LEACHING AND VOLATILIZATION

 TIMING
 GOAL IS TO PROVIDE N FOR MAXIMUM DEMAND PERIOD

 FALL N APPLICATION ARE LESS EFFICIENT

 MORE TIME FOR NITRIFICATION, LEACHING, DENITRIFICATION

 MIGHT BE PRICE OR TAX BENEFIT
 WAIT UNTIL SOIL IS < 50 F
 USE AMMONIUM FORM
 CONSIDER AN INHIBITOR (N-SERVE, DCD)

 PREPLANT APPLICATION REASONABLE FOR MTS AND FTS.
 SIDEDRESS OK TOO, BEWARE OF DELAYS FOR WET CONDITIONS
SIDEDRESS APPLICATION ON SANDS (TABLE 9.15)

<table>
<thead>
<tr>
<th>N RATE (lb/a)</th>
<th>YIELD PP</th>
<th>YIELD SD</th>
<th>REC. PP</th>
<th>REC. SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>38</td>
<td>38</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>70</td>
<td>88</td>
<td>105</td>
<td>50</td>
<td>73</td>
</tr>
<tr>
<td>140</td>
<td>120</td>
<td>136</td>
<td>44</td>
<td>64</td>
</tr>
<tr>
<td>210</td>
<td>132</td>
<td>143</td>
<td>40</td>
<td>49</td>
</tr>
</tbody>
</table>

RECOVERY = \(\frac{N_{\text{uptake (trmt.)}} - N_{\text{uptake (control)}}}{N_{\text{applied}}} \)

\[= \frac{150 \text{ lb N/a} - 50 \text{ lb N/a}}{210} \times 100 = 48 \% \]

PLACEMENT

BROADCAST = UNIFORM SPREADING OVER THE SOIL SURFACE

POTENTIAL LOSS OF AMMONIA FROM UREA. INCORPORATE OR PRAY FOR RAIN

BAND = NARROW STRIP OF FERTILIZER APPLIED SURFACE OR SUBSURFACE

TYPICAL WITH LIQUID N (28%)

SIDEDRESS APPLICATIONS AVOID CONTACT WITH FOLIAGE TO MINIMIZE “BURNING”

INJECTED = APPLIED IN THE SOIL TO SOME DEPTH

OBVIOUSLY NECESSARY WITH ANHYDROUS AMMONIA

COVER KNIFE SLOTS

LIQUIDS ARE COMMONLY INJECTED

FOLIAR = APPLICATION DIRECTLY TO FOLIAGE

LIMIT TO WHAT AND HOW MUCH CAN BE APPLIED (BURNING)

PLANTS NEED A LOT OF N, LIMITED AMOUNTS CAN BE APPLIED FOLIARLY